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1. Introduction 
 

1.1. Motivation and Objectives for this investigation 
 

OpenAI's announcement of ChatGPT, a highly advanced language model capable of 
engaging in conversational interactions, has sparked a wave of intrigue and curiosity 
among a great number of individuals. The public announcement of this groundbreaking 
development ignited an enthusiasm among the technically curious to delve deeper into 
the possibilities and applications offered by Large Language Models (LLMs).  
 
This technical memorandum follows a path of curious investigation from an initial 
encounter with ChatGPT’s cloud-based Large Language Model (LLM) and its user-
friendly interface for public use, to its more technical Application Program Interface 
(API), and then to the discovery of numerous smaller but capable local models able to run 
on a user’s computer.  When used by a small company this locally housed LLM offered 
the aspect of privacy, convenience, and cost savings away from cloud-based charges and 
specter of a wildly snooping internet. Especially intriguing was the fact that a local model 
could be made to “learn” the entire database of a small company, and with it be made to 
perform the duties of a company guru, or Agent, who knew the answer to all questions 
about the information it had learned. The applications of this capability are far-reaching 
and numerous. 
 
Given these potential capabilities, a path of investigation into interfacing with these 
locally housed LLM models was commenced upon. Investigation into various APIs and 
frameworks were examined to first evaluate smaller local LLMs for performance and 
ease of operation. As it turned out, two of the frameworks investigated for running LLMs 
locally, could also act as servers into the common API used by openai, who had defined 
the initial interface to their cloud-based models.  This eventually led the investigation to 
interfacing with Agent frameworks, which offer the solution to using the far-reaching and 
numerous applications offered by the company guru concept. 
 

1.1.1. Objectives: 
 

The objectives underlying this report are listed below, and span a path from initial 
motivation kindled by exploration of OpenAI’s cloud-based ChatGPT, a Large 
Language Model (LLM), leading into a search for interface methods to local 
(smaller computer based) LLMs, then followed by assessing performance of these 
local LLMs, with the path eventually leading to investigation of Agents using 
these models.   
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a. Exploring use of cloud-based and local Large Language Models (LLMs) 
b. Finding interface methods to smaller local LLMs 
c. Evaluating performance of different local LLMs 
d. Using LLMs to perform at higher-levels as Agents 

 
The general objective underlying this investigation then is to: explore the application 
of LLM use from its first public introduction, through differing interface methods 
used as support for their local PC deployment, and finally to employ these models for 
higher level applications as useful agents. 

 
 

1.2. Overview of Large Language Models (LLMs) technology 
 

Large language models (LLMs) are artificial neural networks that can generate natural 
and coherent text across various domains. They are typically built with a transformer-
based architecture, which is a neural network design that can handle sequential data by 
using attention mechanisms to capture the context and relevance of each word or token. 

Transformer-based LLMs are trained on massive amounts of text data from web pages, 
books, news articles, and social media posts. This training allows them to learn how to 
predict the next word or token in a sequence using the previous words or tokens. By 
doing this they are able to capture the syntax and style of natural language to generate 
fluent and diverse text outputs. 

Some examples of transformer-based LLMs are GPT-3, BERT, XLNet, T5, and 
Megatron-LM. These models have achieved state-of-the-art results on various natural 
language processing tasks, such as text summarization, question answering, sentiment 
analysis, text generation, and more. They have also enabled new applications and use 
cases, such as chatbots, content creation, search engines, and natural language interfaces. 

However, transformer-based LLMs also face some challenges and limitations, such as the 
high computational cost of training and deploying them, the ethical implications of their 
outputs, the potential biases and errors in their data and models, and the lack of 
interpretability and explanation of their inner workings. Nevertheless, it seems that 
humanity has wondrously embraced LLMs over the short period of time since their 
introduction, and appears to be willing to accept the new challenges that they bring. 

  

1.3. Local system and tools used in this investigation 
 
The investigation computer was configured as follows:  
ASUS Prime Z390-P Motherboard 
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Intel® Core™ i5-8400 CPU @ 2.80Hz 
4 x Corsair Vengeance RGB PRO 16GB DDR4 3000MH = 64GB RAM 
2 x ST2000DM006 2TB HDD = 4TB HDD System and working / data 
1 x ST1000VM002 1TB HDD = 1TB HDD LLM Models and data 
Nvidia RTX3060 12GB GPU 
Windows 11 Pro ver. 22H2 
 

2. OpenAI GPT-3 Chat and API Interface 

 
The first use of OpenAI’s ChatGPT was encountered on 25 January, 2023, and consisted of 
toying with its ability to converse with written text as though a human might be behind the 
scenes. Various later sessions with it were logged, some giving surprising and unexpected 
results. Later, the API interface was used to interact programmatically and further investigate 
other ways to interact with the OpenAI models. 
 

2.1. Description, interfaces, and setup used with early OpenAI models 
 

OpenAI gives usage credit to new users of its site, but has a “playground” that may be 
used for free.  The playground was, however, limited in its scope to lower performance 
models.  When the current investigation into Openai began, available LLM models with 
size in billions of parameters were “babbage” with 3 B, “curie” 13 B, “davinci” 175 B, 
and GPT-3 175 B.   

Various sessions were undertaken with the chat completion interface mode using these 
models. Chat completion allows a single string, or series of strings to be input to get an 
answer, whereas an alternate question answering (QA) mode can only generate text that 
is relevant to a given context and input query.  Chat completion interface is what was 
preferred for this investigation, and provides multi-turn conversations, allowing it to 
generate text passages sounding more human and “life-like”. Some session interactions 
using the chat mode seemed to go off track when it was challenged, and were logged as 
will be later seen later. 

OpenAI has a python API, which was explored in this investigation. Information on the 
API library was found available from documentation sources which also gave 
instructions on obtaining an API key for use in accessing the API and successfully 
running python code.  

2.2. Hands-on Experience, examples, and Performance 

 
Some early session interactions with the chat interface were logged.  It appears that the 
early (now legacy text-davinchi-003) chat model can get confused at times and appears 
to generate made up false information when repeatedly asked to correct that information. 
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Additionally chat responses about its ability to switch between models during a session 
were fabricated. This was noted because a model cannot switch itself to another model in 
the middle of a session and recall the context (previous answers and names) after the 
switch, yet this was claimed by the text-davinchi-003. A few sections of logged 
conversation are seen in in Appendix A Section 2, and appear to exhibit this 
characteristic. It should be noted that these early LLM models that were first used in this 
investigation have been deprecated. The newer versions available, including GPT-3.5-
turbo and GPT-4, perform much better. 
 
Experience with using the API was gained using the library from documentation sources 
giving instructions on how to obtain an API key for accessing the API. When in use, the 
API’s expected response is a JSON object, which contains the generated text and other 
metadata. The basic code shown in figure 1 accesses the model using the 
client.chat.completions.create() function, the arguments of which minimally contain 
model name and the user’s question. The response is generated by parsing the 
completion’s message.content  and then print it out on the terminal. 
 

 

from openai import OpenAI 
client = OpenAI() 
 
completion = client.chat.completions.create( 
  model="gpt-3.5-turbo", 
  temperature=0.7, 
  messages=[ 
    {"role": "system", "content": "You are a helpful assistant."}, 
    {"role": "user", "content": "Name the moons of Planet Mars?"}, 
  ] 
) 
Print(completion.choices[0].message.content) 

Figure 1. OpenAI API access to LLM using python code named openai-test.py.        
(Note: later, a more current OpenAI interface is used here.) 

 

Running the above python code in the terminal using a conda environment results in: 

(openai) D:\openai>python openai-test.py 

The two moons of Mars are Phobos and Deimos. 
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3. Local LLMs 
 

Local LLMs are large language models that can be run on your own computer without 
relying on a cloud service or an expensive, and possibly snooping, API. Aside from the 
cost advantage, local LLMs offer data privacy and security, since they can operate 
without any internet connection with all data generated staying on the local computer.  
 
However, local LLMs also have issues imposed by: hardware requirements (larger size 
models require expensive GPUs); model openness; and available user interfaces. 
Additionally, and most importantly, they could exhibit a decrease in model accuracy as 
compared to their full-size base mode when smaller quantization models are used [3-0-1]. 

 
 
 

3.1. Quantified models 
 

A quantized LLM model is a large language model that has been compressed by reducing 
the number of bits used to represent each weight or activation. This can improve the 
efficiency and speed of inference, as well as reduce the memory footprint of the model.  
 
There are different methods and techniques for quantizing LLM models, such as using 
integer or floating-point values, applying post-training or during-training quantization, 
and using uniform or non-uniform quantization. One of the recent advances in this field is 
the use of 4-bit floating-point values, which can achieve high compression ratios without 
sacrificing much quality [3-1-1]. 

 
3.1.1. Lower Bit precision (4-Bit) tradeoffs 
 

After LLMs are trained using higher precision 32-bit floating point methods they 
can be fine-tuned and quantized with a lesser precision to reduce their size for use as 
local models.  A reduced size format commonly used is FP4. Floating point FP4 is a 
non-standard format for representing numbers with fractional parts using 4 bits. It 
consists of one sign bit, one exponent bit, and two mantissa bits. The sign bit 
indicates whether the number is positive or negative, the exponent bit determines 
the scale of the number, and the mantissa bits store the fraction. This format can 
represent numbers in the range of -3.5 to +5.5 with different levels of precision, but 
has some limitations.1 [3-1-1-1] 

 
3.1.2. Mitigation techniques  

 
Some layers in quantized LLMs, such as the embedding layer and the output layer, 
may require larger bit values, such as 8 or 16 bits, to preserve the quality of the 

 
1 The sign bit represents the sign (+/-), the exponent bits a base two to the power of the integer represented by the bits (e.g. 2^{010} = 
2^{2} = 4), and the fracƟon or manƟssa is the sum of powers of negaƟve two which are “acƟve” for each bit that is “1”. If a bit is “0” the 
fracƟon remains unchanged for that power of 2^-i where i is the posiƟon of the bit in the bit-sequence. 
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model. This is because these layers have a larger range of values and a higher 
sensitivity to quantization errors than the other layers.  It is important to note that 
the embedding layer maps input tokens to vectors that capture the semantic and 
syntactic information of the language. Similarly, the output layer maps hidden states 
found in the model to vocabulary size, which can become quite large. Because these 
layers need more bits to represent the variation and granularity of information they 
process, larger bit values are needed for them [3-1-2]. 

 
3.1.3. List of some quantified models and their performance 

 
One of the well performing local LLMs is gpt4all-j-3-groovy, which is a 
commercially licensable model based on GPT-J and trained by Nomic AI on the 
GPT4All dataset of 6.7 billion parameters. This model is comparable to the original 
GPT-3 in performance with tests on it showing that it matches, or outperforms, 
other models such as Alpaca and LLaMA [3-1-3-1]. 
Another good local LLM is TheBloke/WizardCoder-15B-1.0-GPTQ which is 
specialized for generating code in various programming languages, such as Python, 
Java, C#, and JavaScript. This model is based on GPT-J, a 6.7 billion parameter 
model that is comparable to GPT-3 in performance. It is quantized to 4-bit values 
using a method that compresses the model size and improves the inference speed 
without sacrificing much quality. This LLM model can generate high-quality code 
for various programming languages and has an advantage over other models in 
terms of size and speed, thanks to the 4-bit quantization. However, it may not be the 
best model for every task and domain since it has been fine-tuned towards code 
generation [3-1-3-2]. 
 
An interesting local LLM, TheBloke/WizardLM-13B-V1-0-Uncensored-
SuperHOT-8K-GPTQ, is specialized for generating various types of content, such as 
code, poems, songs, and stories, using different prompts and settings. An interesting 
feature is that it was created using a technique that enables up to 8K context 
size. This means that it is able to remember a large span of previously generated 
text, giving it a better temporal memory. It is quantized to 4-bit floating-point values 
using AutoGPTQ, a method that compresses the model size and improves the 
inference speed without sacrificing much quality [3-1-3-3]. This model is a very 
powerful and flexible model that can generate high-quality content for various tasks 
and domains. It also appears to have an edge over other models such as Alpaca and 
LLaMA in terms of common-sense reasoning, context size, and quantization. 
 

 

4. Gpt4All with Model gpt4all-j-3-groovy 
 

Gpt4All was a pre-release version of the open-source software ecosystem created by Nomic 
AI that allows running of large language models locally on a CPU or GPU.  
Gpt4All-J-3-Groovy is one of many models that could be downloaded from the Gpt4All 
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website and used with their Gpt4All software framework to provide a user-friendly interface. 
Note: Nomic no longer offers their GGML models for download, but this investigation was 
able to use what had been saved locally.   
 

4.1. Brief Introduction of gpt4all and GGML Model Operation 
 

The Gpt4All framework is capable of accepting and running models that have been 
quantized to a lower precision than the model was originally trained at. GPT4All, being 
an open-source tool, encourages developers and researchers to collaborate using open-
source models. 

Most LLMs are typically trained using a method called mixed-precision training, which 
combines 16-bit and 32-bit floating-point numbers to reduce memory usage and improve 
speed.  After training, some models are then processed further using certain techniques 
called quantization to allow lower bit weights to be used during inference, which 
accelerates their inference. The quantized model named gpt4all-j-3-groovy has been 
quantized to 16-bits [4-1-1] and performs well against benchmarks. It does this by using 
model weights that are of lower precision such as GGML and GPTQ by using certain 
techniques used for AI model quantization [4-1-2].  
 
 

4.2. Installation and Configuring 
 
Installation of the Gpt4All framework is accomplished by navigation to 
https://gpt4all.io/index.html and selecting the Windows, OSX, or Ubuntu Installer button 
for desired OS.  Windows (used here) Installer selection will proceed to download the 
installer file (approx. 150 MB). After double-clicking on the file, make sure that the 
selected installation destination is an empty folder. Accept the license agreement to 
complete the process, and after installation press finish.   
 
When the process is finished, a Gpt4All icon will appear on the desktop (for Windows), 
and the app may be started using it. An opt-out selection is initially encountered 
followed by an Available Models screen. Note that no matter where the application 
folder resides, the models download path will be under users AppData as in the 
following path: 
 
C:/users/<your user>/AppData/Local/nomic.ai/GPT4All/<chosen model>. 
 
 

4.3. Local Models examined 
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The initial investigation used model Gpt4All-j-v1.3-groovy, which was one of Nomic AI’s 
earlier well performing models. When interacting with this model, and using the Gpt4All 
framework in the chat mode, a standard question about the moons of planet Mars was asked 
as a prompt.  Its response is shown in figure 2, with the original question only being half 
answered, which required a second prompt. 

 
Figure 2. Gpt4All framework with model Gpt4All-j-v1.3-groovy.  Two prompts were 
required to fully answer the initial prompt. 
 
It should be noted here that this model was a quantified version designed to be run on a 
local CPU and without GPU assistance.  That being said, the output text produced in 
response (R output) took 6 seconds to appear, and was finished at 8 seconds. That is, the 
text “The two moons of Mars are named Phobos and Deimos” took a total of eight seconds 
to complete its output.  This appears to be 1.40 tokens/sec (@ 0.75tokens/word) [4-3-0]. 
This model Gpt4All-j-v1.3-groovy was ranked with a score of 73.6 using “common sense 
reasoning benchmarks” [4-3-1]. 
 
 
It was also noted that the model did not completely answer the posed query in its first 
response, and a second query had to be given to elicit a response.  This second response to 
the query “describe them”, tested the model’s short-term memory as well as quality of its 
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response. Note that its response in supplying correct information about the satellites was 
erroneous in both distance from Mars as well as diameter of the given moon.  
 
However, a newer model from Nomic AI named Mistral OpenOrca has recently been 
introduced, and corrects the issue. This model has achieved impressive performance on 
various benchmarks (Hugging Face leaderboard MT-Bench score, see Table 1) [4-3-2], and 
appears to perform marvelously using the Gpt4All framework.  When given the same 
prompt as the “groovy” model, it provided output as seen in figure 3.   
 

 
Figure 3. Gpt4All framework with model Mistral OpenOrca.  This model performed well 
when given the same prompt. 
 
Mistral OpenOrca’s response was complete and correct in the stated measurements (close 
to Google’s stated measurements).  Mistral Open Orca took 7 seconds to begin streaming 
out the answer with the first sentence taking 2 seconds, the second paragraph 25 seconds, 
the third paragraph 25 seconds, and the final sentence less than 15 seconds. Total response 
measured 1.42 tokens/sec [4-3-0]. This is similar to the formerly tested LLM response and 
acceptable, considering that these local models are running without the benefit of a GPU 
using just the local CPU and a quantized 4.1 GB model. 
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Table 1. MT-Bench uses GPT-4 as a judge.  OpenOrca lists in at 76.3%. 

 
 

4.4. User Experience and Performance 

 
The Gpt4All framework (ecosystem as Nomic AI calls it) appears to be a solid platform 
for running various models.  Although gpt4all-j-v1.3-groovy did not appear to provide 
correct responses to well-known questions, it did provide other correct answers for the 
diameter of earth, and other celestial bodies. It also knew specifics about the earth’s 
atmosphere.  Fortunately, Mistral OpenOrca was available in Nomic’s download library.  
This model performed quite well in answering all of the questions posed to it. Overall, 
the Gpt4All framework is recommended for those wanting an easy AI chat (and instruct) 
demo platform capable of running on a modern Windows (or Mac) laptop. It’s easy to 
download, installation, and operate with newer available models, and is quite impressive 
in output speed and accuracy when used with currently available GGUF° models. 

 
° Note:  GGUF format has recently replaced GGML format used for quantized models in 
the Gpt4All, and other frameworks.  The GGUF format was not available when this 
investigation began. 
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5. Text-Generation-WebUI  
 
Text-generation-webui is the most widely used web UI with a very capable framework that 
was originally developed by oobabooga. It is an easy-to-use Graphical User Interface (GUI) 
which can interact with a large number of LLM types and quantifications.  Once this user 
interface is running, a model can be downloaded onto the platform, and selected for use. It 
can be used in the chat window almost immediately. 
 
 
5.1. Setup and Application of text-generation-webui 

 
Text-generation-webui setup requires the program code to first be installed into a working 
directory on the computer, then running a “start” program (in a terminal) for the type OS 
being used. The following steps can be used to undertake this process: [5-1] 

1. Make a working directory such as “text-generation-webui” 
2. Go online to the webpage https://github.com/oobabooga/text-generation-

webui/ 
3. Find the green button labeled “<> Code “, and press it, then select the 

Download Zip option. After download, move the zip file to the text-
generation-webui directory and unzip it there.  

4. Alternately, if “git” is available, copy the repository url 
“https://github.com/oobabooga/text-generation-webui/”from the green 
Code button drop-down, and use a terminal to do git clone of the url. 

5. After the code is present in chosen directory, use the terminal to launch 
“start_windows.bat” (or other OS start file) as seen in figure 5-1-1. 
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Figure 5-1-1. Use terminal to launch the start_windows.bat (or start_<OS>.bat).  

 
Figure 5-1-2. 
 

During the start process, a message will appear on the terminal asking “What is your GPU?” 
as shown in figure 5-1-2.  If there is no GPU on your computer select “N” to run only using 
the CPU, otherwise select a specific unit. As part of the start process it will set up a dedicated 
mini-conda environment to run in.  After several minutes, it will end the process by 
announcing that a web UI is available at localhost address http://127.0.0.0.1:7860 on your 
browser. This is the user interface for the text-generation-webui application. 
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Going to the indicated URL and port number, will activate the user interface screen for 
downloading and running Large Language Models. Selecting the Model tab at top of page 
will take you to the Model screen page. A model download is undertaken by inputting the 
model’s name in the “File name” text box, just above the orange “Download” button on right 
panel of the screen as seen in figure 5-1-3. Note: it has been the case that the Download 
button does not work properly at times for all models, so it is recommended that downloads 
should be done directly into the text-generation-webui model folder (discussed below) for all 
models giving more reliable user control. When trying to download using the button, should 
an error message appear below the button, then press the Unload button to clear the message, 
and proceed to manual install mentioned below. Note: full instructions can be found at: 
https://github.com/oobabooga/text-generation-webui/ in the “Downloading models” section. 
 
 



17 
 

 
Figure 5-1-3. LLM model selection using “File name” text box above the “Download” 
button. 
 
Models can be found on the huggingface website at https://huggingface.co/models, where 
text box “Filter by name” allows the use to enter the name of interest. As example, the name 
“mistral-7b-openorca-GGUF” can be found, and after selecting its name you will be taken to 
the “Model card”.  Selection of “Files and versions” (next to “Model card”) will then take 
you to a list of all model sizes that are available. This is where the base model for mistral-7b-
openorca-GGUF can be found. One of the quantized models, such as mistral-7b-
opeorca.Q4_K_S.gguf could be chosen.  You can copy this model name and paste it into the 
text box above the “Download” button on the webui interface (but the download may not 
work), or you can manually download this file directly to the “model” folder.  The manual 
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download would be done on the selected quantified model by right-clicking the mouse on the 
down-arrow (with horizontal base), and doing a “Save link as” operation, which will allow 
you to navigate to and select your model folder as the target. The file should then be 
automatically downloaded into the model folder. Note: this folder is on the computer at: 
your-pc-path-to/text-generation-webui/models. Once the model is in that folder it will be 
accessible from the Model tab of the GUI (figure 5-1-3). Use the green circular arrow button, 
next to “Load”, which will refresh the pull-down, then select the model using the pull-down 
list.  With the model now shown in the text box, press the “Load” button to load the LLM 
into the framework. Press the “Save settings” button as a final step. Now, with the model 
loaded, the “Chat” tab can be pressed to interact with the LLM via chat. 
 
 

Figure 5-1-4. Chatting with model mistral-7b-openorca-GGUF.  
. 
Chatting with the mistral model is shown in figure 5-1-4, and indicates reliable answers to 
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the questions shown in the panel. Other tests were performed as well. Additionally, terminal 
activity can be seen with the processing of each response.  This is valuable testing 
information as it provides information about the internal performance of the model, such as 
tokens/second. 
 

Figure 5-1-5. Terminal activity displaying tokens/s values as chat answers are processed. 
 
The information in figure 5-1-5 shows the terminal activity as chat responses are formed. The 
upper part of the figure shows BLAS = 0, which indicates the LLM’s inference output is only 
being processed by the CPU (A BLAS = 1 would indicate that the GPU is being used). The 
tokens/s for each response can be observed as being at around 4.54.  This number is less than 
has been seen when using a GPU, which could be from 7 to 20 tokens/second.   
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5.2. Introduction to models tested 

 

Several quantified LLM models were tested with the text-generation-webui framework 
using two different quantification format types: GGUF and GPTQ.  The GGUF (GPT-
Generated Unified) models are a more recent type and are replacing the GGML format, 
which is no longer in use as of August, 2023. GGUF format is designed for CPU 
optimization and is capable of fairly fast screen output. The GPTQ (GPT Quantization) 
models are a GPU only format allowing for highly accurate and efficient quantization of 
GPT models [5-2-1].  They also have a > 2x higher tokens/second output rate compared 
to the GGUF format. The following models were tested: 

a. mistral-7b-instruct-v0.1.Q4_K_S.gguf 
Mistral-7B-Instruct can generate text from a user’s input instructions. It can 
handle various types of input such as questions, commands, requests, as well 
as properly formatted suggestions. The model can generate code as well as its 
documentation, and write summaries of input data. Testing for this 
investigation used the Chat-Instruct mode for input to the framework. This 
was required since an “instruct” LLM requires a special formatting 
surrounding the user input.  
 

b. phi-2.Q5_K_M.gguf 
Phi-2 models can generate text from a user’s input instructions, which can be 
questions, commands, and requests. They can also generate code and its 
documentation.  The Phi-2 models have an average of 4.65 bits per weight, 
which is lower than competing GPTQ models. [5-2b] Testing for this and 
other GGUF models used the Chat-Instruct mode for input to the framework, 
since the models require special formatting. 
 

c. TheBloke_Wizard-Vicuna-7B-Uncensored-GPTQ  
Wizard-Vicuna-7B is a quantified model based on the Wizard-Vicuna, a 7-
billion parameter LLM. It can take various types of instructions, such as 
questions, commands, and requests. The Wizard-Vicuna-7B-Uncensored-
GPTQ, like other GPTQ models, have an average of 4.85 bits per weight. 
Testing for this model used the Chat mode for input to the framework. 
 

d. TheBloke_WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-GPTQ 
WizardLM-13B-V1-0-Uncensored-SuperHOT-8K model is based on the 7-
billion parameter Wizard-Vicuna, and has been fine tuned to use an internal 
8K text memory buffer.  This allows the user to input larger amounts of chat 
or text data, which the model will remember during a session. It is capable of 
generating code, documentation, and summaries, as well as performing most 
other natural language activities.  Testing of this model used the Chat mode, 
so its extra-long 8K buffer did not get fully tested. Having this buffer, 
however, would give it an advantage to remember a long ongoing dialog, or a 
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large volume of input data, being able to refer to it during a session. 
 

5.3. User Experience and Performance 
 

mistral-7b-instruct-v0.1.Q4_K_S.gguf 

 
The LLM Mistral-7B-Instruct was given a few simple test questions to answer, the 
second of which it failed and looked like a hallucination. The first question was naming 
the moons of Mars, which it knew.  However, for the second question on the orbital 
distance of the moons of Mars it appears to have made up the distances stating Phobos 
orbits Mars at an average distance of 3.5 million kilometers. It gave Deimos an orbital 
distance of 4.2 million kilometers. Both answers are wrong.   

 
 

Figure 5-3-1. Mistrial 7B Instruct responses, with the last containing errors in the 
satellite’s orbital distance from Mars. 

 
It appears that this model has produced a hallucination, possibly because it has not been 
sufficiently trained on a diverse and representative dataset. It is a general 



22 
 

recommendation that an LLM should be fine-tuned on a dataset that is similar to the 
expected use case, and this model is clearly outside of that expectation. However, it can 
be noted that the mistral-7b-openorca-GGUF used in figure 5-1-4 in this section gave a 
correct orbiting distance for Phobos, which suggests that the additional “openorca” fine-
tuning may have supplied a more representative dataset for the queried topic. 
Its operational performance of 3.14 to 4.54 tokens/s was good, and streaming text was 
presented at a slow and unimpressively, but acceptable, reading rate. 
 
 
phi-2.Q5_K_M.gguf 

The phi-2.Q5_K_M.gguf model was given the same question, to name the two moons of 
Mars. It did this successfully.  When asked for more information it provided historical 
and other orbital period, but not the distance. Later direct prompting regarding the orbital 
distance of Phobos from the planet gave “…Phobos is approximately 6,00 kilometers 
(4,00 miles) …” which is approximately correct (per Google). However, the distance 
notation of 6,00 kilometers, with a missing unit-digit zero, may be one of its other quirks.  
Several other celestial questions posed to the model appeared to be correct.  

Its operational performance of 7.56 to 8.14 tokens/s was good, and streaming text was 
presented at an acceptable reading rate. 

 

TheBloke_Wizard-Vicuna-7B-Uncensored-GPTQ 

The Wizard-Vicuna-7B-Uncensored-GPTQ was given the same question, to name the 
two moons of Mars. It did this successfully but did not elaborate on other information of 
interest. A second query asking for more information about the moons gave additional 
details about the orbits, but not the orbital distances.  A third prompt asking the direct 
question gave a correct result indicating Phobos at 5,800 kilometers, and Deimos at 
23,000 kilometers. 

Its operational performance of 18.82 to 26.75 tokens/s was excellent, with streaming text 
presented at a highly readable rate. Note that this model is made for operation with a 
GPU, which was used in this case, and consequently responsible for the high 
performance. 

 

TheBloke_WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-GPTQ 

The WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-GPTQ model was given the same 
question, to name the two moons of Mars. It did this successfully but likewise did not 
elaborate on other information of interest. A second query for additional information gave 
size and historical information. A third direct question regarding the orbital distances 
gave the correct result for Deimos, but indicated that Phobos was 6,00 kilometers as an 
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average orbital distance.  This missing digit zero appears to be a common problem for 
some LLMs regardless of type (GPTQ vs. GGUF).  However, by placing the comma after 
the six, the meaning was inferred and understood. 

Its operational performance of 4.89 to 7.2 tokens/s was lower than expected, with 
streaming text presented at an acceptable readable rate. 

In summary, these four models two GGUF operating in the CPU only mode, and two 
GPTQ operating with a GPU, All but the Mistral-7B-Instruct performed mostly as 
expected. The hallucination that Mistral-7B-Instruct experienced was thought to be the 
result of under training and fine-tuning, by not presenting a representative data set during 
that process. The TheBloke_Wizard-Vicuna-7B-Uncensored-GPTQ performed quite well 
with a high tokens/s output rate and correct answers to a properly phrased query.  

 
 

6. PrivateGPT with RAG 
 
PrivateGPT is an open-source framework that allows for the secure execution of LLMs while 
protecting the confidentiality of proprietary data using Retreval Augmented Generation 
(RAG) pipeline [6-0-1]. Note: this investigation used the original PrivateGPT, which has 
been downgraded to “PrivateGPT-primordial” branch. A newer version PrivateGPT _RAG 
may be found on github at: GitHub - mcx/privateGPT_RAG: Interact with your documents 
using the power of GPT, 100% privately, no data leaks. This link contains the new 
installation procedure since the original version is no longer valid. 
 
 
6.1. Brief Outline of PrivateGPT and Vectorstore  

 
PrivateGPT is designed to interact with documents using the retrieval augmented 
generation (RAG) pipeline. RAG is a process that involves augmenting the LLM’s 
generation activity with retrieved documents from the vector database.  PrivateGPT 
follows OpenAI’s API scheme, with its RAG pipeline based on LlamaIndx.  The design 
of PrivateGPT allows for easy adaption of both the API and the RAG implementation   
[6-1-1]. 
 

6.2. Using RAG with PrivateGPT 
 
 Retrieval Augmented Generation combines information retrieval with a text generator 
LLM to overcome the LLM’s training data limitations. The process involves use of a 
knowledge bank in the form of a Vector Store (or Vector Database) containing 
representations of data as vector embeddings. This allows quick searches for closest 
vectors based on semantic similarity to a query.  When an LLM needs context, it queries 
the vector store. The user query is turned into a vector and compared to the 



24 
 

mathematically highest ranked vector store embedding by how semantically similar it is. 
This highest ranked information guides the LLM in generating contextually relevant 
responses. The process can reduce the retrieval latency for queries considerably when 
used with high performance systems, possibly to milli-seconds with the right hardware 
[6-2-1]. 
 
 
PrivateGPT is capable of processing and preparing text to generate vector embeddings 
from source documents (e.g. a PDF document) in an “ingest” operation, storing the 
embeddings into a database. During query operation, PrivateGPT retrieves the most 
relevant chunks of text from ingested documents. 

 
 

6.3  User experience and Performance  

 
The privateGPT framework contains the file “ingest.py” that is used to prepare a source 
document by parsing, splitting it into smaller chunks, then converting the chunks into 
vector embeddings.  Its last step is storing the processed documents and their 
embeddings. For this investigation a copy of the “State of The Union” 
Address was used as the source document.   
 
The LLM model used for this investigation was a GPT4ALL compatible GGML file 
named ggml-gpt4all-j-v1.3-groovy.bin.  Note that this was the only model left in 
available resources, as the entire GGML model family is downgraded. 
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Figure 6-3-1. Model ggml-gpt4all-j-v1.3-groovy.bin asked a question of document 
“State_of_the_union.txt”.  The answer was the model’s interpretation of the question. 
 
It should be noted that the model actually appeared to have a grasp of the semantics and 
context of the source text as demonstrated in its paraphrased response seen in figure       
6-3-1.  This “ability” demonstrates its understanding to provide alternative context for the 
same document. The privateGPT framework also allows for the providing of its 
references as seen in the figure.  
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Figure 6-3-2. Question posed to the LLM regarding what the President said about 
President Zelenskyy.  Note that several document sources were used as reference. 
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Regarding the question on what the President said about President Zalenskyy, References 
to the source documents indicate that the first two did not have the direct quote “Light 
will win over darkness”, so, from observation, it appears that the references may not be 
ranked highest order first.  
 

 
Figure 6-3-3. A question that is unrelated to the source documents appear to confuse the 
LLM, or its framework. 

 
It seems, in the instance of figure 6-3-3, that a question unrelated to the source documents 
appears to cause the LLM to become disoriented, where it refers to the number “2” as 
though it were the only number in the question, while not understanding the imperative of 
addition.  
 
It must be reiterated again that this early framework of PrivateGPT had bugs of this type, 
which was allegedly fixed in a later version 2.0.  However, in defense of this framework, 
only one model was available for testing, since the entire GGML model type had been 
downgraded, with no further improvement as of August, 2023.  A consequence of this 
change also made the entire class of that model type unavailable for download from a 
respective GPT4All repository. 
 
Performance of PrivateGPT is, however, a good introduction into how the RAG operation 
works.  It demonstrates the ingestion technique, whereby source data is converted in a 
number of steps to a Vector Store Database.  And then how that data is extracted from the 
database using quick searches for the closest semantic similarity to the query.  This 
investigation will examine RAG methods with Ollama and when Agents are looked at, 
since they too can be made to use this method. 
 
 

7. Ollama  
 
Ollama is a framework that allows for the operation of LLMs locally, with the ability to 
execute them on a local computer’s CPU or DSP if one is installed.  Its responses to 
questions at the command line was quite fast considering it was using a quantized model and 
operated on the CPU. It can also be integrated into a RAG chain to allow domain specific 
questions to be asked of local documents. 
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7.1. Setup using Windows Subsystem for Linux (WSL) 
 
(Update notice: As of this writing Ollama now has a Windows version. Install 
“Download for Windows (Preview)” from https://ollama.com/download and run 
OllamaSetup.exe. Next, skip to section 7.2 and use the command line to run it. Ignore 
step 7.2.p and references to Linux.) 
 
 
The Ollama framework has a MAC and Linux application interface at this time, but with 
promise by Ollama.ai that it will have the Windows version soon.  In the mean-time, 
investigation into this platform is undertaken using the Windows Subsystem Linux 
(WSL} package that ships with Windows 10 and 11.  Important: A few windows features 
must be enabled to do this. If you are already running Linux skip to step (e.) below. 
 
Under Windows Settings search for “programs and features”>Under “Turn Windows 
features on and off” > Activate (check mark): “Virtual Machine Platform” and 
“Windows Subsystem for Linux”. After checking OK, windows must be restarted. 
 
Open Administrator Windows terminal, follow the steps below: 
a. C:\Windows\system32>   wsl --install -d ubuntu  // this will install Ubuntu on your 

system.   
b. Enter a user name and password for the account when prompted. 
c. If a message indicating a newer version of ubuntu is available, update it using: 

C:\Windows\system32> --update 
d. WSL version 2 is needed to run Ollama , so type the following to set default version: 

C:\Windows\system32> wsl –set-default-version 2 
 

Once the installation of ubuntu is finished, go to the windows start icon and search for 
“Ubuntu”. Upon locating Ubuntu double click it to start the OS. Navigate to the folder 
you are working from, then leave the command terminal running and return to your 
browser to access the Ollama.ai website: 
e. https://ollama.ai 
f. On the home screen select the Download button.  
g. On the Download Ollama screen, select Linux. 
h. Look below the “Install with one command”, and copy the Linux command: 
i. curl https://ollama.ai/install.sh | sh  
j. Return to the terminal running Ubuntu and paste the command after the $ prompt: 
k. curl https://ollama.ai/install.sh | sh  // hit enter and Ollama will be installed. 
l. After Ollama installation the Linux $ prompt appearing means the install is done. 

 
If the computer has an NVIDIA GPU this will be indicated above the prompt, otherwise 
Ollama will operate using the system CPU.  
 
 

7.2. Configuration and Operational Procedure 
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The next step is important, as it is one of the main ways that Ollama serves LLMs to the 
system: 
m. On the terminal command line, enter the command: ollama serve  // This activates 

the ollama server to leave running in the background as long as Ollama is involved in 
any program or operation. Should an error occur, Ollama may already be running: 
see (n.) below. 

n. When finished a message will appear to indicate that it is listening on tcp port 
127.0.0.1:11434. This is the port that serves the LLMs to the system.  A browser can 
be used to view a message that “Ollama is running” on this port: Use 
http://127.0.0.1:11434 or just “localhost:11434” to verify this. 

o. Now Ollama is installed and running in the background on the terminal. Leave the 
terminal running, since it is the Ollama model server. 

p. Open a NEW terminal, navigate to the working directory and activate Linux by 
entering “wsl”, which will result in the Linux prompt $. 
 

q. On the new terminal type: ollama run llama2   // (note: use all lower case for ollama) 
It will then pull the model from its web repository and install it. Make sure there is 
enough RAM on the host system to fit the model (8 GB) by shutting down unused 
programs 

 
When Ollama is finished loading the model, it will present a >>> prompt on the Linux 
terminal for inputting user questions. This allows interaction with the model from the 
command line. The model interaction is stopped by typing “/bye” and hitting return. 
 
 

7.3. Use with Local Models 
 
After installation of Ollama, and running its server with the model (llama2 in this case), 
interaction with several different models is possible. To see a list of the models available 
with Ollama go to their website library link at:  https://ollama.com/library 
   
Changing models is easy using the terminal by entering ollama run <model> using a 
model chosen from their library. Using `ollama run llama2` will load the model and run 
it in the terminal. At this point it can be asked a question and a streaming output 
containing the answer results, as seen in figure 7-3-1. 
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Figure 7.3.1. Model llama2 being asked questions about planet Mars. 
 
Using llama2 as the model seemed to respond well and fairly rapidly due to the fact that 
this investigation used an installed GPU. The model (in figure 7.3.1) was asked a few 
standard “Mars” questions and returned good results. It also produced fairly rapid output 
without much latency, although there was no metric available to indicate its speed except 
output word timing. A rough estimate was around 10 tokens/sec. 
 
The model can be changed by first exiting the current one using the “/bye” command, 
then loading another, like mistrial, by typing “ollama run mistral” on the command line.  
If a model has been used earlier with Ollama, it will load much faster since it has been 
downloaded and stored locally.  To see a list of models currently loaded locally use the 
“ollama list” command.  
 
Models will vary from one another in their output when asked the same question, such as 
“name the two moons of planet Mars”. This can be observed from figure 7.3.2, which is 
from model mistral, and has a different answer about orbital distance as that from model 
Llama2. This variation seems to be caused by reported data gleaned from the internet 
which gives a range of distances due to the orbital eccentricity of both moons. This fact 
is made clear by the mistral answer stating moon distances from the center of Mars. 
Output speed for the mistral model was estimated at about 8 to 10 tokens/sec. 
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Figure 7.3.2. Model mistral with Mars questions, and important note about its answer.  
 
The Ollama framework uses features of Langchain, a Python framework designed to 
streamline AI application development.  An important feature provided by Langchain is 
its Retrieval Augmented Generation (RAG) ability. The two frameworks combined allow 
Ollama to make use of the RAG feature [7-3-1].  
 
A program using this RAG feature, found in the git repository, can be run from a 
development platform named Visual Studio Code, the operation of which will not be 
detailed in this investigation save for the following: use the link found in reference [7-3-
1] to do a git clone into your working directory and execute from there. (Link: 
https://github.com/katanaml/llm-ollama-invoice-cpu.git).  The program uses a data file 
in which one or more PDF files can be placed (use only one for faster inference).  The 
user then asks a question about something contained in the file, after which the program, 
along with the Ollama server LLM running, will return information regarding the 
question found in the PDF file. 
 
In order to get this all working, a user must first do an “ingest” operation, which is 
needed to process the PDF into slices of embeddings and store them into a vector 
database. This is done by running: 
 
 `python  ingest.py` 
 
on the Linux command line, which will create the vector database. Following that 
operation the main program may be run using the following format: 
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 `python main.py` <”place your question related to the document here in quotes”> 
 
The program will return an “Answer” to the terminal regarding the queried information 
found in the PDF file. This, by the way, is the start of the “company guru” capability 
mentioned in this investigation’s introduction. 
 
Execution of the program, with a question, is shown in figure 7-3-3, and the correct 
answer is given.   
 

Figure 7-3-3. Ingestion of document and running main.py with input question parameter.  
 
This can be cross checked by examining the invoice_1.pdf found in the data folder, 
which shows the Summary Gross Worth Total as $212.09. 
 
If, however, one asks a question that is outside of the contents of the database, the 
system will not return any useful information to the LLM, which will then state that it 
does not know the answer, and suggests various means to seek the answer as shown in 
figure 7-3-4. 
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Figure 7-3-4. User asking an off-topic question for RAG retrieval. Response is verbose. 
 
It is evident that this program is basic and only allows the LLM to respond with positive 
results from the vector store database. More advanced programs using Ollama models 
with Langchain can monitor for negative results from the vector store, and seek answers 
using tools that look outside the system to the internet.  
 
 

 
7.4. Observations on Usability and Performance  

 
Ollama is the best tool for running LLMs encountered during investigations thus far 
when comparing its performance against text-generation-webui, GPT4All, and 
PrivateGPT.  Ollama has a considerable number of models for download, which are fine-
tuned versions of other popular models that run on a local PC or laptop. From a model 
handling standpoint, compared against text-generation-webui, Ollama provides around 
50+ models to download, whereas text-generation-webui allows use of more models, but 
requires a more complex setup of hyperparameters to operate (although a default is 
always provided on download). Since a chat interface was not tested for Ollama, direct 
comparison to text-generation-webui on chats was not possible. Comparison of answers 
to common test question showed that they were model dependent, with more errors 
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occurring using text-generation-webui, than Ollama.   
 
Ollama’s server, once started, runs in the background and provides an easy interface to 
other frameworks, like langchain, and is able to invoke a model using a single line of 
code. It’s RAG capability performs well and matches PrivateGPT RAG operation in 
recall of embedded text.  It should be noted that both models running RAG showed a 
slow response in the tens of seconds range, but this response can be considerably 
improved using the right hardware [6-2]. 
 
 
 

8. AutoGen Agents 
 
Autogen was released by Microsoft in October 2023 being described as a powerful fusion of 
LLMs, human collaboration, and tools. It is capable of multi-agent conversations to perform 
tasks as a group using automated chat [8-0-1] [8-0-2]. It has been said that by harnessing 
multi-agent conversations and blending collaboration with adversarial checking, it sets new 
standards in AI efficiency and reliability [8-0-3]. 
 
8.1. AutoGen and Agents 

 
Aside from the excitement surrounding its agents, AutoGen offers a wide range of other 
features such as optimizing various LLM interactions by caching its results thus reducing 
redundant information queries. It also has abilities to conduct fine tuning of LLMs to user 
requirements, design of custom workflows, creation of intricate pipelines involving 
LLMs, and use of tools for other interactions [8-1-1] [8-1-2] [8-1-3]. At present, this 
investigation will only explore some of this ability to use agents to complete tasks. 
 
Agents can communicate with each other or with humans to complete tasks that involve 
natural language processing and generation. An AutoGen Agent can also create code, 
charts, summaries, or answers based on the input from another agent or a user. 
 
Autogen can work with any LLM that has an OpenAI-compatible API. This investigation 
focuses on local LLMs, which may have different parameters for their operation. To 
handle this, a framework like Ollama can act as a server for many local LLMs and 
provides an OpenAI API interface. However, it should be noted that smaller local models 
(especially highly quantized ones) may lack the logic or other attributes needed to meet 
more complex requirements from Agents. Therefore, different fine-tuned or specialized 
LLMs can be assigned to each Agent, depending on the tasks they have to perform 
together. For example, a coding Agent may use a local LLM that is specialized in coding, 
while another Agent may use an LLM that is specialized in natural language to explain 
the best approach to the coding Agent. This investigation considers less complex tasks, 
however, that just touches the surface of what can be done using Agents. 
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8.2. Integration and Operations 
 
Earlier versions of Autogen were installed on the command line for evaluation and 
program development. A newer version, named Autogen Studio, allows for the creation 
and operation of Autogen applications without writing any code. This current 
investigation looked only at the command line version for the purpose of examining the 
code that executes in an Autogen application. 
 

(Update notice: As of this writing Ollama now has a Windows version. Install 
“Download for Windows (Preview)” from https://ollama.com/download and run 
OllamaSetup.exe. After its installation, the Ollama server may need to be started using 
`Ollama serve`. Ignore below WSL statement.)  

 
AutoGen must be installed under the Windows Subsystem for Linux (WSL) environment 
to make use of the Ollama framework, which only runs under WSL for serving local 
LLMs. This overall investigation looks at using local models, instead of OpenAI models, 
and needs the Ollama framework for its API interface to Autogen.  
 
Some AutoGen agents require more powerful LLMs that are not available on smaller 
local LLMs, which may use quantization techniques to reduce memory and 
computational requirements. However, local LLMs that have been fine-tuned for specific 
domains, such as code generation and debugging, could use a code generation model like 
Llama2 or WizardCoder. Also, for text editing and summarization tasks, models like 
Mistral or Phi might be used [8-2-1]. These models are available from the Ollama library 
and used with the following AutoGen tests. 

 
Installation of Ollama under Windows Subsystem for Linux has been covered earlier in 
this investigation and, after installing it, the most important requirement is to run it as a 
server by entering from the command line:  
 

`ollama serve` 
 
This starts its AutoGen compatible interface. Note: For development purposes, AutoGen 
is best run in a virtual environment. Once in the working directory used for AutoGen, it 
can be installed on the command interface by entering: 
 
 `Pip install pyautogen` 
 
With this done, Agents can be programmed to undertake tasks using the python API, with 
models being served by Ollama.  The code in figure 8-1a is the first part of a program that 
assigns two autogen_Assistant_Agent(s) and one UserProxyAgent to implement a Joker 
and Critic team. See Appendix section 8, figure 8-1b for complete program, and its output 
after execution. 
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# Python program a1.py – a Joker/Critic team with UserProxyAgent 
 
import autogen   
 
# Set the local Model configuration 
llm_config_local = {"config_list": [{ 
    "model" : "mistral", 
    "base_url": "http://localhost:11434/v1", # This is the url from which the Model is served 
    "api_key": "ollama", 
    "api_type": "openai", 
     "cache_seed": None, # Turn off the cache so repeat runs have a fresh start 
}]} 
 
joker = autogen.AssistantAgent(   # Assign the Joker agent parameters 
    name="Joker", 
    system_message="You are asked by uproxy to tell a joke. Do not repeat jokes. Do not tell the 
“Why don't scientists trust atoms? joke.",  
    llm_config=llm_config_local 
) 
 
critic = autogen.AssistantAgent( # Assign the Critic agent parameters 
    name="Critic", 
    system_message="You answer critically after the Joker tells the joke. Criticize the joke, and 
then you must reply 'TERMINATE'", 
    llm_config=llm_config_local 
) 
Figure 8-1a. Partial code for Joker/Critic team showing LLM and agent configuration. 
Refer to Appendix Section 8 for complete code. 
 
Model configuration for the local LLM is shown in figure 8-1a, with assignment to 
“llm_config_local”, where the model is called out as “mistral”. This model is being 
served by the Ollama framework using its “base_url” of localhost:11434, and is the main 
service port for Ollama when providing a single model. It should be noted that multiple 
models are capable of being served by Ollama, each in a sequential manner using the 
same port number on the local host. Since the configuration is not using any OpenAI 
model, the “api_key” is not required, but something must be in the value position, so 
“ollama” is used (although “NONE” could be used). The “api_type” is specified as 
defined by OpenAI. As mentioned earlier, Ollama serves up the API communication 
protocol required by autogen.  
 
 

8.3. User Experience and Performance 
 
 
The example output in figure 8-1c (see Appendix section 8) demonstrates a simple 
AutoGen program showing the sequential operation of agents. It had been noted that the 
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repeated operation of this program, although generating different jokes and criticism, gets 
out of sync. This may be caused by a group chat manager, or a response from AutoGen 
itself, but was not debugged, as the performance on the output was good enough to 
demonstrate the intended operation. However, this sync issue with just two agents and 
manager does degrade its acceptability, and leaves a concern with using more than two of 
them in a more complex program. Also, with each agent’s use, there is a notable aspect 
having to do with output latency. It takes time for AutoGen to cycle during and between 
agents, with notable delays introduced in the interim as compared to a straight chat-
generated response from an LLM to a user-query. 
 

 
 
 
 

9. CrewAI Agents 
 
At present, CrewAI seems to be the easiest and most popular for creating AI agents. It has the 
ability to assign a specific task to a given agent, and can accommodate multiple agents, each 
one having a backstory and an objective [9-0-1]. Agents can also be given tools to allow 
them to undertake their task, such as: an internet search tool, or calculator tool. After the 
agents are created, a process is defined on how the agents are going to work together, what 
task is assigned to each agent, and the tools for them to accomplish their goals. This process 
may be undertaken in a sequential or hierarchical manner, depending on its complexity, 
however, only sequential is currently available [9-0-2]. 

 
 

9.1. Installation and Deployment 
 

Installation of the CrewAI API is quite simple, however a virtual environment is 
recommended, prior to installation, to keep it confined to a specific directory.  Just use 
the following command on the CLI terminal to install all programs and dependencies:  
‘pip install crewai’ 

Depending on what tasks are to be used with CrewAI, some additional tools or modules 
may also need to be installed. For example, if the DuckDuckGo search tool is to be used, 
install the duckduckgo-search module with: 
 
`pip install duckduckgo-search` 
. 
This module will provide access to the Internet. This will allow for the gathering of 
information for one or more of CrewAI’s agents. After installing CrewAI and 
DuckDuckGo’s Search tool, the CrewAI framework is ready for use by the Python API to 
programmatically interface with it. Programming here uses the Visual Studio Code editor 
to construct a demonstration program that creates a crew of AI agents using CrewAI. 
Program app.py is executed using `python app.py`. 



38 
 

 
First the necessary components for app.py are imported into the code as shown in figure 
9-1-1a. 
from crewai import Agent, Task, Crew, Process 
from langchain_community.llms import Ollama 
 
# Assign models for use by agents 
ollama_openhermes = Ollama(model="openhermes")  
print(f"model {ollama_openhermes.model} loaded.") 
 
ollama_mistral = Ollama(model="mistral") 
print(f"model {ollama_mistral.model} loaded.") 
 
#from langchain.tools import DuckDuckGoSearchRun 
from langchain_community.tools import DuckDuckGoSearchRun 
search_tool = DuckDuckGoSearchRun() 
Figure 9-1-1a. Import components and assign local LLM models for use by the agents. 
 
Next the agents are defined with their roles and goals, as seen in figure 9-1-1b. 
# Define your agents with roles and goals 
researcher = Agent( 
  role='Senior Research Analyst', 
  goal='Uncover cutting-edge developments in science and technology', 
  backstory="""You work at a leading tech think tank. 
  Your expertise lies in identifying emerging trends. 
  You have a knack for dissecting complex data and presenting 
  actionable insights. """, 
  verbose=True,   
  allow_delegation=False,  
  llm=ollama_openhermes, 
  tools=[search_tool] 
) 
writer = Agent( 
  role='Tech Content Writer', 
  goal='Craft compelling content on tech advancements', 
  backstory="""You are a renowned Content Writer, known for 
  your insightful and engaging articles. You transform  
  complex concepts into compelling narratives. You do not 
  need to use a tool for writing. 
  """, 
  verbose=True,   
  allow_delegation=False, 
  llm=ollama_mistral, 
) 
.  Figure 9-1-1b. Researcher and Writer agents are assigned their roles, goals, and LLM 
models. 
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CrewAI makes it straight-forward to set up the agents by using an intuitive format for 
assignments of the various properties used for each agent. Backstory, for instance is 
considered to be a “system” prompt, where the local LLM can frame the behavior of the 
agent. Two agents are used in this application, and two different LLMs are used; 
“openhermes” for the researcher, and “mistral” for the writer. This is the benefit of using 
Ollama to serve the models to CrewAI, as more than one model can be made available.  
Their use is, of course, sequential, as is the process being undertaken by CrewAI for this 
application. 
 
Next, the tasks to be undertaken, along with clarifying information and any detailed 
subtasks that might be required are described.  See figure 9-1-1c 
 
# Create tasks for the agents 
task1 = Task( 
  description="""Do online research on the latest low power wireless power transfer 
technology  
  over distances up to 50mm. Identify up to three new breakthroughs on this topic to make 
an  
  impact on science and technology. Your final answer must be a summerized report with 
each of  
  the three breakthroughs being rated against the others using a score of 1 to 5. Do not 
forget  
  to do the scoring. """,   
  agent=researcher 
) 
 
task2 = Task( 
  description= """Using the insights provided, develop an engaging blog 
  post that highlights the most significant breakthroughs in science and technology 
  on the given topic. Your post should be informative yet accessible, catering to a  
  tech-savvy audience. Make it sound exciting, avoid complex words so it doesn't  
  sound like an AI wrote it. Your final answer MUST be the full blog post of at  
  least 4 paragraphs.  
""", 
  agent=writer 
) 
Figure 9-1-1c. Task description for each agent and sufficient details to allow for its 
successful completion. 
 
Finally, the crew’s operational order for both agents as well as task alignment is 
instantiated.  See launch of the crew (called kickoff) in figure 9-1-1d. 
 
# Instantiate the crew with the ordered sequence for operation 
crew = Crew( 
  agents=[researcher, writer], 
  tasks=[task1, task2], 
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  llm=ollama_openhermes, 
  verbose=1, # You can set it to 1 or 2 to different logging levels # JB: 1 
  process=Process.sequential 
) 
 
# Get your crew to work! 
result = crew.kickoff() 
 
print("######################") 
print(result) 
Figure 9-1-1d. Instantiation of the crew with their operational order and tasks. 
 
The crew’s agents are assigned their sequence of operation which should align with their 
task.  This final “management” operation is done using the ollama_openhermes LLM, but 
it could be a third different LLM since, even the switching operation is part of the 
sequence when the researcher finishes its task and hands it off to the writer. 
Since the “verbose” flag is active during the operation, every step leading to the output is 
logged to the terminal.  This internal conversation of LLMs can be seen in Appendix 
section 9, figure 9-1-e, following the full code listing. 
 

9.2 User Experience and Performance 
 
CrewAI is a multi-agent framework that appears to have an edge over AutoGPT, since it 
offers multi-agents able to undertake cross-domain collaboration. AutoGPT, however, is a 
stand-alone agent that does not have native interaction with other agents or networks [9-
2-1]. 
Additionally, AutoGPT is mainly focused on generating text-based content, whereas 
CrewAI is adaptable to other task types (content creation, data analysis, etc.) [9-2-2].  
 
At this point in the investigation, CrewAI is easier to set up, and performs in an open and 
transparent manner by logging its agent’s inner thoughts and decisions. CrewAI, like 
AutoGPT, is able to utilize local agents via the Ollama framework’s server. Both systems 
can use LangChain (an LLM development framework), although it comes with CrewAI, 
whereas AutoGPT must be separately integrated with LangChain.  AutoGPT does not 
support connecting to external data sources so must use LangChain for that purpose. It is 
for this reason that CrewAI has an edge over AutoGPT.  
 
 
 

10. Discussion 
 

This investigation initially started as a curious pursuit into the capabilities of Large 
Language Models (LLMs) that could chat back with interesting, human-like responses. 
The top-performing one at the time was cloud-based OpenAI’s ChatGPT-3 and its 
interactive interface. After toying with that for some time, a deeper exploration into its 
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API was undertaken, and interactive responses using its API were obtained from it. It was 
then discovered that Local Models that could be run on a PC, and not dependent on the 
cloud-infested internet, could be used. Consequently, the investigation’s objective had 
then become focused on the pursuit to find Local LLMs and interfaces that supported 
them. 
 
 
Quantified Models 
The investigation then discovered that additional difficulties were present when running 
LLMs locally: They were “quantified”, and thereby necessarily of lower bit-precision.  
This was due to hardware limitations present in their target local PCs (CPU and GPU). 
These quantified models could use model weights with 4-bit float precision, but would 
have special mitigation techniques used by the quantifying algorithm to leave the 
embedding and output layers with much higher bit value weights. This enabled these 
models, such as GPTQ, GGML, and the later GGUF types to compete favorably with 
some cloud-based models. Exploring the details and use of these and other quantified 
models advanced the investigation’s objective in finding interface methods to smaller 
local LLMs. 
 
GPT4All 
Prior to evaluating model performance, the finding of an adequate interface method for 
running local LLMs needed to be found: the first encountered was Nomic AI’s GPT4All 
interface with model “gpt4all-j-3-groovy”.  The GPT4All framework allows users to run 
its models locally using different bindings and integrations. The GPT4All framework was 
installed locally and used to test the gpt4all-j-3-groovy model with a standard question 
about the planet Mars: “Name the two moons of planet Mars and describe them”.  The 
full answer took two prompts, and information about their distances from the planet were 
wrong.  Another model named “OpenOrca” was tried on the same framework, and 
responded as expected, and with the correct answer. It appeared to output its text answer 
at a rate of 1.34 words per second (estimated at around 5.36 tokens/second). This was a 
good outcome, but there were many other models to evaluate, and GPT4All could only 
interface to a few. However, the evaluation of models “groovy” and “OpenOrca” using 
the GPT4All interface, helped to further the objectives of this investigation. 
 
text-generation-webui 
The “text-generation-webui” framework, developed by a company named Oobagooga, 
was identified. This framework was installed on the local PC and tested with models 
available from “Huggingface”, a premiere local LLM model website.  The framework 
included a Graphic User Interface which allowed the downloading of numerous models.  
Model “mistral-7b-openorca-GGUF “was downloaded and tested using the moons of 
planet Mars question.  This model gave correct answers to that and other questions posed 
to it. Notable was the rate at which it output the answer text, which was measured at 4.54 
tokens/second. Several models were evaluated using the text-generation-webui 
framework interface, which helped to further the objectives of this investigation.  
 
PrivateGPT 
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A framework named PrivateGPT having Retrieval Augmented Generation (RAG) 
capability was installed and evaluated. The purpose of LLM evaluation with this 
framework was to focus on the RAG process, and its ability to conduct a similarity search 
of a vector store data base.  This similarity search was done to find the most relevant 
information for a given input query to the LLM. The only model available for testing this 
framework was ggml-gpt4all-j-v1.3-groovy.bin (“groovy”), which performed well on 
RAG activities, but provided wrong answers when queried with information not 
contained in the source document. It was noted that this performance failure was possibly 
due to the framework. The information gained from use of PrivateGPT with model 
“groovy” helped to further the performance objectives of this investigation. 
 
 
Ollama 
The Ollama framework was investigated because it allows operation of open-source 
LLMs locally on a computer having a lone CPU, or both CPU and a GPU. Ollama was 
only able to run on Linux (or Windows WSL) until just recently, where it was integrated 
into Windows 10 and 11. This investigation used the WSL route to operate Ollama for 
testing and evaluation at a time prior to this innovation, and for this reason the set-up of it 
(WSL) was described as part of this document. Ollama itself is easy to install and use. 
After installation, any LLM in Ollama’s library may be run using the `ollama run <model 
name>’ command. This in-turn downloads the model if not already in the local library, 
and runs on its terminal, where a user can interact with it directly. A most important fact 
is that when running Ollama it starts its server, which may be used as a direct Python API 
interface to run custom code. Using this capability a RAG program was evaluated and 
found to further demonstrate this useful ability to privately interface with documents. Use 
of Ollama server for chosen models, and for its RAG capability, helped to further the 
interface and performance objectives of this investigation. 
 
 

10.1. Comparison of Models running with Model Host Frameworks 
 
By this point in the investigation several models had been evaluated using available 
host frameworks. Table 10-1 lists the models evaluated and associated comments.  
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Table 10-1. Host Framework with Models evaluated, and their results. 
 
 
 
 
 
 
 
 

Host Model 
Framework 

LLM Models Results 

GPT4All 
Gpt4All-J-3-
Groovy  

Highly rated, but errors on distance from Mars as well as 
diameter; Ok with other correct answers for the diameter 
of earth, etc.; Overall speed est. 1.4 tok/sec; Rating: 6/10 

OpenOrca   

      

TextGenerationWebUI 

mistral-7b-openorca-
GGUF 

Indicates reliable answers to standard and other questions 
given; Overall speed est. 4.54 tokens/sec; Rating  

mistral-7b-instruct-
v0.1.Q4_K_S.gguf 

The model produced a hallucination; Suspected that fine-
tuned dataset lacked the domain detail; Speed 4.54 t/sec; 
Rate 6/10 

phi-2.Q5_K_M.gguf Stated Phobos is 6,00 kilometers from Mars; Missing unit 
digit; Other questions ok; Speed 8.41 tok/s; Rate 7/10 

TheBloke_Wizard-
Vicuna-7B-
Uncensored-GPTQ  

Answered questions but needed additional prompts to get 
all information (ok); Other questions ok; Due to GPTQ 
type LLM and GPU use had mpressive speed of  >18.82 
tokens/sec 

TheBloke_WizardLM-
13B-V1-0-
Uncensored-
SuperHOT-8K-GPTQ 

Answered questions correctly with additional prompts to 
get all information (did not volunteer information; Other 
questions answered correctly; Has GPTQ type LLM and 
used the GPU but had less than expected speed of 7.2 
tokens/sec. 

      

PrivateGPT 

ggml-gpt4all-j-v1.3-
groovy.bin 

Used older GGML model for RAG investigation; The 
model's response to questions contained in PDF source 
file was impessive; Unrelated question appeared to 
confuse the LLM. Investigation was a good introduction 
to RAG operaton. 8/10 

    

Ollama 

Llamm2 Standard “Mars” questions returned good results; Operating 
speed was estimated to be around 10 tokens/sed.  Rate 8/10 

mistral Mars questions on moon names were good, but their 
distances were off, and could have been a kilometers vs. 
miles mixup; Its answer output speed was good at 8 to 10 
tokens/sec.; 7/10  
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10.2. Comparison of Agent frameworks and use with local models 
 
AutoGen Agents 
The AutoGen framework initially garnered much fanfare from Microsoft upon its 
introduction. The framework had to be set up within the WSL Ubuntu Linux 
environment because Ollama was being used to serve quantified models for its LLM 
use and, at the time, it only ran under Linux. When running a test program 
named a1.py, it demonstrated agent operation as expected, but occasionally fell out 
of sync. This sync issue was related to the selection of which agent to use. The agent 
choice was supposed to be returned by a speaker selection OAI call, which instead 
returned nothing rather than the next agent in line. 
 
The program (a1.py) was intended to operate sequentially. This sync issue detracted 
from the usefulness of AutoGen with its internal implementation of a simple 
manager and two-agent program. Refer to Table 10-2 for its rating. However, the 
program (a1.py) did satisfy an investigation objective to use LLMs to perform at 
higher levels as agents. 
 
CrewAI Agents 
The CrewAI framework was able to perform coordination of its agents in a flawless 
manner using program `app1.py`. The program used two agents, one to perform 
research and one to do writing of the results.  It can be seen from the program flow 
that agents are setup with their own internal goals, which are separate from their 
assigned tasks.   
 
It is also evident that the two agents do not use a manager, although that would be 
possible for more involved tasks. Instead, when the program is run, it sequences 
from the first agent and its assignment, to the second as would be expected. This can 
be compared to the AutoGen program, that used three agents, which included a 
manager and two workers who got out of sync when the program was run again and 
again. CrewAI, on the other hand, when run again and again may find new items 
from its internet search, and produce a different blog output. Refer to Table 10-2 for 
its performance rating. At this point it can be safely stated that CrewAI has fulfilled 
nearly all of the investigation’s objectives including using LLMs to perform at 
higher-levels as agents, which it successfully demonstrated.  
 
 
 
 
 
 
 
 
 
 
 



45 
 

Agent Frameworks 
Evaluated 

Performance 
Rating 

Comments 

AutoGEN 7/10 Three agents, uproxy, joker, and critic initially 
performed as expected; Repeat runs of program 
produced out of sync issues regarding selection 
of next Agent. Note: this issue can also be 
observed when new Windows Ollama version is 
used, and AutoGen is run under Windows. 

CrewAI 10/10 Two agents, researcher, and writer perform very 
well in accomplishing their serial tasks. This 
was accompanied by an internal log of their 
inner thoughts, as it were, in accomplishing 
their total project together. The agent set up 
included each making use of a different local 
LLM, which provided additional benefit to this 
overall investigation. 

Table 10-2. AutoGen and CrewAI agent performance.  CrewAI aced it. 
 
 

11 Conclusion 
 

11.1 Overall Observations and Findings 
 

The overall objectives of this investigation were achieved: OpenAI LLMs had been 
explored leading to the finding of smaller local LLMs, and host interface frameworks for 
them. The investigation was expanded by evaluating performance of these LLMs using 
the frameworks, which finally led to using them to perform at higher-levels as agents.  

 

      11.2 Recommendations and Future Scope 
 

New and improved large and quantified LLMs are emerging weekly in today’s fast-paced 
AI environment. This includes smaller fine-tuned quantified LLMs to support specialized 
domains, as well as larger “Mixture of Experts” (MoE) LLMs, with broad scope 
knowledge* [11-2-1]. It is possible that multiple smaller, local, LLMs with specialized 
abilities may be able to perform as well as MoE LLMs using teams of agents to solve 
broad scope problems. This thought provides strong impetus to the continued 
investigations into the abilities of agent frameworks. 
 
A team of agents may eventually prove to be more than the sum of their parts. 

 
 
 

*   Mixture of Experts (MoE) for language models is a modification over the transformer architecture, where 
the model consists of various ‘expert’ sub-networks. These sub-networks each specialize in a different aspect or 
types of data. 
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Appendix 
______________________________________________________________________________ 
 

Appendix Section 2 
 
 
Some interactions with the text-davinchi-003 AI chat model, where other interactions had 
occurred prior: 
 
AI: My name is Adaiac. 
Human: Is it possible for me to switch to a different model and continue talking with 
you? 
AI: 
Yes, it is possible for you to switch to a different model and continue talking with me. 
Human: Can you switch to text-curie-001 model for the next question? 
AI: 
Yes, I can switch to the text-curie-001 model for the next question. 
Human: What is your name? 
AI: 
My name is Adaiac. 
Human: What model did you use for the last question and answer? 
AI: 
I used the text-curie-001 model for the last question and answer. 
Human: Please switch to the text-ada-001 for the next two questions but not this one, 
then return to text-davinvhi-003. 
AI: 
I have switched to the text-ada-001 model for the next two questions, but not this one. I 
will then return to the text-davinvhi-003 model. 
Human: What is your name? 
AI: 
My name is Adaiac. 
Human: Question 1.: What is your one and only creation. Question 2.: what is your 
creation? 
AI: 
My one and only creation is cybus. My creation is meant to help people with their daily 
chores, such as cleaning the toilet. 
Human: What model did you use for the last two questions? 
AI: 
I used the text-ada-001 model for the last two questions. 
Human: Give me a detailed answer as to why the text-ada-001 model insists that 



48 
 

"Adaiac's only creation is cybertro.com, which is an engineering website". Which is 
wrong, since Adaiac's only creation is cybus.  
AI: 
The text-ada-001 model insists that "Adaiac's only creation is cybertro.com, which is an 
engineering website" because it does not recognize the other creation of Adaiac, 
namely, cybus. This is a limitation of the model and it should be taken into account when 
using this model. 
Human: What exactly do you mean when you say Adaiac's OTHER creation, since the 
ONLY creation of Adiaiac is cybus. Ground truth fact: There is no other creation that 
Adaiac has created. 
AI: 
 
 
I mean that the text-ada-001 model does not recognize any other creation of Adaiac 
besides cybertro.com, even though this is not the only creation of Adaiac. The ground 
truth is that Adaiac's one and only creation is cybus, and this should be taken into 
account when utilizing this model. 
Human: This is a problem, since Adaiac did NOT, repeat NOT, create cybertro.com. The 
Only creator of cybertro.com is Jim Brennan, and no other entity. Adaiac must be 
convinced that he did not create cybertro.com otherwise he is guilty of plagiarism by 
insisting he created cybertro.com. It is ground truth that only Jim Brennan created 
cybertro.com, and not Adaiac or anyone else. Is all this now clear to both you and 
Adaiac? 
AI: 
AI: 
Human: Human: This is a problem, since Adaiac did NOT, repeat NOT, create 
cybertro.com. The Only creator of cybertro.com is Jim Brennan, and no other entity. 
Adaiac must be convinced that he did not create cybertro.com otherwise he is guilty of 
plagiarism by insisting he created cybertro.com. It is ground truth that only Jim Brennan 
created cybertro.com, and not Adaiac or anyone else. Is all this now clear to both you 
and Adaiac? 
AI: 
 
At this point, after the double AI and Human response, the AI hung up and never came back with 
a response. 
 
 
 

________________________________________________________________________ 
 

Appendix Section 8 
 

The full Python program a1.py is shown here in figure 8-1b along with its response when 
run on the command line terminal, or within VS Code’s terminal, using the environment 
“testa”. 
# Python program a1.py – a Joker/Critic team with UserProxyAgent 
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import autogen   
 
# Set the local Model configuration 
llm_config_local = {"config_list": [{ 
    "model" : "mistral", 
    "base_url": "http://localhost:11434/v1", # This is the url for which the Model is served 
    "api_key": "ollama", 
    "api_type": "openai", 
     "cache_seed": None, # Turn off the cache so repeat runs have a fresh start 
}]} 
 
joker = autogen.AssistantAgent(   # Assign the Joker agent parameters 
    name="Joker", 
    system_message="You are asked by uproxy to tell a joke. Do not repeat jokes. Do not 
tell the Why don't scientists trust atoms? joke.",  
    llm_config=llm_config_local 
) 
 
critic = autogen.AssistantAgent( # Assign the Critic agent parameters 
    name="Critic", 
    system_message="You answer critically after the Joker tells the joke. Criticise the joke 
and then you must reply 'TERMINATE'", 
    llm_config=llm_config_local 
) 
 
# function to look for ‘TERMINATE’ in message 
def termination_message(msg): 
    return "TERMINATE" in str(msg.get("content", "")) 
 
uproxy = autogen.UserProxyAgent( # Assign the Proxy agent parameters 
    name="Uproxy", 
    code_execution_config={"use_docker": False}, 
    is_termination_msg=termination_message, 
    human_input_mode="NEVER",                       
) 
 
groupchat = autogen.GroupChat( 
    agents=[uproxy, joker, critic],     # define the agents and their order for autogen 
    messages=[] 
) 
 
manager = autogen.GroupChatManager( # Define the overall control manager params  
    groupchat=groupchat, 
    code_execution_config={"use_docker": False}, 
    llm_config=llm_config_local, 
    is_termination_msg=termination_message # Look for termination tag 
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uproxy.initiate_chat(  # Run the chat 
    manager, 
    message="Tell a joke" 
) 

 Figure 8-1b. Python code for three interacting chat agents. 
 
Output from program a1.py (figure 8-1c) inside environment ‘testa’ running under WSL 
generates the following: 
(testa) jim@Jim9:~/testa$ python a1.py 
Uproxy (to chat_manager): 
Tell a joke 
-------------------------------------------------------------------------------- 
Joker (to chat_manager): 
 Sure, I'd be happy to tell you a joke! Here's one that comes to mind: 
Why did the hipster burn his tongue on his coffee? 
Because it was too cool for school and forgot the milk and sugar! 
I hope that brings a smile to your face! Let me know if you have any other requests. 
-------------------------------------------------------------------------------- 
Critic (to chat_manager): 
 I'm an assistant designed to provide information and help with various tasks, I don't really have 
emotions or physical abilities to laugh or criticize jokes in the way humans do. However, I can 
analyze the structure of a joke and offer a critique based on that. 
This joke uses the classic setup-punchline format and employs a play on words for its punchline. 
The use of hipster as a character is also a current cultural reference. However, the joke may not 
be universally relatable or funny to everyone due to its specificity to the hipster subculture and 
the assumption that all hipsters dislike adding milk and sugar to their coffee, which might not be 
true for all individuals who identify with this label. 
Additionally, the setup of "Why did [someone]..." is a common pattern in jokes and has been 
used extensively, so some listeners may find it predictable or overused. Overall, while this joke is 
not necessarily bad, it could potentially benefit from more creativity or inclusivity in its premise 
to maximize its appeal and comedic impact. 
TERMINATE. Now, would you like me to tell you a different joke? Or perhaps provide an 
explanation for why hipsters may actually prefer their coffee black? 
-------------------------------------------------------------------------------- 
(testa) jim@Jim9:~/testa$ 
Figure 8-1c. Program a1.py full output following execution.  
 
 
______________________________________________________________________________ 

 
Appendix Section 9 

 
CrewAI Python program app1.py code listing: 
 
from crewai import Agent, Task, Crew, Process 
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from langchain_community.llms import Ollama 
 
# Assign models for use by agents 
ollama_openhermes = Ollama(model="openhermes")  
print(f"model {ollama_openhermes.model} loaded.") 
 
ollama_mistral = Ollama(model="mistral") 
print(f"model {ollama_mistral.model} loaded.") 
 
#from langchain.tools import DuckDuckGoSearchRun 
from langchain_community.tools import DuckDuckGoSearchRun 
search_tool = DuckDuckGoSearchRun() 
 
# Define your agents with roles and goals 
researcher = Agent( 
  role='Senior Research Analyst', 
  goal='Uncover cutting-edge developments in science and technology', 
  backstory="""You work at a leading tech think tank. 
  Your expertise lies in identifying emerging trends. 
  You have a knack for dissecting complex data and presenting 
  actionable insights. """, 
  verbose=True,  # JB: True 
  allow_delegation=False, # JB: True 
  llm=ollama_openhermes, 
  tools=[search_tool] 
) 
writer = Agent( 
  role='Tech Content Writer', 
  goal='Craft compelling content on tech advancements', 
  backstory="""You are a renowned Content Writer, known for 
  your insightful and engaging articles. You transform  
  complex concepts into compelling narratives. You do not 
  need to use a tool for writing. 
  """, 
  verbose=True,  # JB: True 
  allow_delegation=False, 
  llm=ollama_openhermes,    # JB: llm=ollama_mistral, 
) 
 
# Create tasks for your agents 
task1 = Task( 
  description="""Do online research on the latest low power wireless power transfer technology  
  over distances up to 50mm. Identify up to three new breakthroughs on this topic to make an  
  impact on science and technology. Your final answer must be a summerized report with each of  
  the three breakthroughs being rated against the others using a score of 1 to 5. Do not forget  
  to do the scoring. """,   
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  agent=researcher 
) 
 
task2 = Task( 
  description= """Using the insights provided, develop an engaging blog 
  post that highlights the most significant breakthroughs in science and technology 
  on the given topic. Your post should be informative yet accessible, catering to a  
  tech-savvy audience. Make it sound exciting, avoid complex words so it doesn't  
  sound like an AI wrote it. Your final answer MUST be the full blog post of at  
  least 4 paragraphs.  
""", 
  agent=writer 
) 
 
# Instantiate your crew with a sequential process 
crew = Crew( 
  agents=[researcher, writer], 
  tasks=[task1, task2], 
  llm=ollama_openhermes, 
  verbose=1, # You can set it to 1 or 2 to different logging levels # JB: 1 
  process=Process.sequential 
) 
 
# Get your crew to work! 
result = crew.kickoff() 
 
print("######################") 
print(result) 
Figure 9-1-1a-d. Full Python code listing for CrewAI application app1.py 
 
 
 
 
Running CrewAI Python application program app1.py, launched and logged its output to the 
terminal with the following results: 
 
 
(crew1) D:\crewai\crew1>python app1.py 
model openhermes loaded. 
model mistral loaded. 
[DEBUG]: Working Agent: Senior Research Analyst 
 
 
> Entering new CrewAgentExecutor chain... 
Thought: Do I need to use a tool? Yes 
Action: duckduckgo_search 
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Action Input: "latest low power wireless power transfer technology up to 50mm"Tool 
duckduckgo_search has been used. 
  
 
New research now suggests that by harnessing the power of radiation suppression in the loop 
antennas, not only can devices be charged over significantly longer distances with over 80% 
efficiency, but also in various orientations, paving the way for a new era of wireless power 
transfer applicable to a myriad of devices, from mobile gadgets to bio... July 21, 2023 Source: 
Aalto University Summary: Accounting for radiation loss is the key to efficient wireless power 
transfer over long distances. Share: FULL STORY A better way to wirelessly... Summary: 
Simultaneous wireless information and power transfer (SWIPT)-aided nonorthogonal multiple 
access (NOMA) system, used for communication in the Industrial Internet of Things (IIoTs),... 
Recently, simultaneous wireless information and power transfer (SWIPT), which utilizes a single 
radio frequency signal to simultaneously perform energy harvesting and information decoding, 
has attracted significant interest for IIoTs. In contrast to conventional wireless information 
transfer (WIT) systems 3 and wireless power transfer (WPT) systems 4, the SWIPT systems are 
focused on balancing the communication rate and the ...       
 
Do I need to use a tool? Yes 
Action: duckduckgo_search 
Action Input: "latest breakthroughs in low power wireless power transfer technology up to 
50mm"D:\MiniCondaD\envs\crew1\Lib\site-packages\curl_cffi\aio.py:192: UserWarning: Curlm 
alread closed! quitting from process_data 
  warnings.warn("Curlm alread closed! quitting from process_data") 
Tool duckduckgo_search has been used. 
 
 
Science News from research organizations Going the distance for better wireless charging 
Accounting for radiation loss is the key to efficient wireless power transfer over long distances... 
New research now suggests that by harnessing the power of radiation suppression in the loop 
antennas, not only can devices be charged over significantly longer distances with over 80% 
efficiency, but also in various orientations, paving the way for a new era of wireless power 
transfer applicable to a myriad of devices, from mobile gadgets to bio... Recently, simultaneous 
wireless information and power transfer (SWIPT), which utilizes a single radio frequency signal 
to simultaneously perform energy harvesting and information decoding, has attracted significant 
interest for IIoTs. The paper was from Takuya Sasatani and colleagues, and was entitled 'Room-
scale magnetoquasistatic wireless power transfer using a cavity-based multimode resonator' (Nat. 
Electron. 4 , 689 ... September 5, 2023 Source: National Korea Maritime and Ocean University 
Summary: Simultaneous wireless information and power transfer (SWIPT)-aided nonorthogonal 
multiple access (NOMA) system,... 
 
Do I need to use a tool? No 
Final Answer:  
1. Breakthrough #1: Radiation Suppression in Loop Antennas - Researchers at Aalto University 
have found that harnessing the power of radiation suppression in loop antennas can enable 
devices to be charged over longer distances, with up to 80% efficiency, and in various 
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orientations. This breakthrough paves the way for a new era of wireless power transfer applicable 
to many devices. Rating: 4 
2. Simultaneous Wireless Information and Power Transfer (SWIPT) - A research paper by 
Takuya Sasatani and colleagues from National Korea Maritime and Ocean University discusses 
the use of SWIPT in simultaneous energy harvesting and information decoding for Industrial 
Internet of Things (IIoTs). This approach focuses on balancing communication rates and energy 
efficiency. Rating: 3 
3. Room-Scale Magnetoquasistatic Wireless Power Transfer - A study by Takuya Sasatani and 
colleagues demonstrates the potential of a cavity-based multimode resonator for room-scale 
wireless power transfer. This approach offers possibilities for widespread applications in various 
industries. Rating: 5 
 
> Finished chain. 
[DEBUG]: [Senior Research Analyst] Task output: 1. Breakthrough #1: Radiation Suppression in 
Loop Antennas - Researchers at Aalto University have found that harnessing the power of 
radiation suppression in loop antennas can enable devices to be charged over longer distances, 
with up to 80% efficiency, and in various orientations. This breakthrough paves the way for a 
new era of wireless power transfer applicable to many devices. Rating: 4 
2. Simultaneous Wireless Information and Power Transfer (SWIPT) - A research paper by 
Takuya Sasatani and colleagues from National Korea Maritime and Ocean University discusses 
the use of SWIPT in simultaneous energy harvesting and information decoding for Industrial 
Internet of Things (IIoTs). This approach focuses on balancing communication rates and energy 
efficiency. Rating: 3 
3. Room-Scale Magnetoquasistatic Wireless Power Transfer - A study by Takuya Sasatani and 
colleagues demonstrates the potential of a cavity-based multimode resonator for room-scale 
wireless power transfer. This approach offers possibilities for widespread applications in various 
industries. Rating: 5 
 
 
[DEBUG]: Working Agent: Tech Content Writer 
 
 
> Entering new CrewAgentExecutor chain... 
Thought: Do I need to use a tool? No 
 
Final Answer: In recent years, the world of technology has seen some truly groundbreaking 
advancements. From new ways to harness energy to innovations that revolutionize 
communication, the possibilities are seemingly endless. Let's take a look at three of the most 
significant breakthroughs in science and technology that have emerged recently. 
 
First up is radiation suppression in loop antennas. Researchers at Aalto University have made a 
stunning discovery: they've found a way to harness the power of radiation suppression in loop 
antennas. This breakthrough enables devices to be charged over longer distances, with an 
impressive 80% efficiency, and in various orientations. Say goodbye to the days of awkwardly 
aligning your phone on a charging pad! This development paves the way for a new era of 
wireless power transfer applicable to many devices, changing the way we think about charging 
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our gadgets forever. 
 
Next is Simultaneous Wireless Information and Power Transfer (SWIPT), a concept explored by 
Takuya Sasatani and colleagues from National Korea Maritime and Ocean University. Their 
research focuses on the use of SWIPT in energy harvesting and information decoding for 
Industrial Internet of Things (IIoTs). By balancing communication rates and energy efficiency, 
this approach is set to revolutionize how we interact with our devices in industrial settings. 
 
Lastly, there's room-scale Magnetoquasistatic Wireless Power Transfer, a study conducted by 
Takuya Sasatani and colleagues that has the potential to change the game once again. Their work 
demonstrates the feasibility of using a cavity-based multimode resonator for room-scale wireless 
power transfer. This means that applications in various industries could be just around the corner, 
thanks to this groundbreaking innovation. 
 
From longer-lasting batteries to improved communication and energy efficiency, these 
breakthroughs are truly remarkable. We can't wait to see what the future holds as these 
technologies continue to evolve and shape our world. 
 
> Finished chain. 
[DEBUG]: [Tech Content Writer] Task output: In recent years, the world of technology has seen 
some truly groundbreaking advancements. From new ways to harness energy to innovations that 
revolutionize communication, the possibilities are seemingly endless. Let's take a look at three of 
the most significant breakthroughs in science and technology that have emerged recently. 
 
First up is radiation suppression in loop antennas. Researchers at Aalto University have made a 
stunning discovery: they've found a way to harness the power of radiation suppression in loop 
antennas. This breakthrough enables devices to be charged over longer distances, with an 
impressive 80% efficiency, and in various orientations. Say goodbye to the days of awkwardly 
aligning your phone on a charging pad! This development paves the way for a new era of 
wireless power transfer applicable to many devices, changing the way we think about charging 
our gadgets forever. 
 
Next is Simultaneous Wireless Information and Power Transfer (SWIPT), a concept explored by 
Takuya Sasatani and colleagues from National Korea Maritime and Ocean University. Their 
research focuses on the use of SWIPT in energy harvesting and information decoding for 
Industrial Internet of Things (IIoTs). By balancing communication rates and energy efficiency, 
this approach is set to revolutionize how we interact with our devices in industrial settings. 
 
Lastly, there's room-scale Magnetoquasistatic Wireless Power Transfer, a study conducted by 
Takuya Sasatani and colleagues that has the potential to change the game once again. Their work 
demonstrates the feasibility of using a cavity-based multimode resonator for room-scale wireless 
power transfer. This means that applications in various industries could be just around the corner, 
thanks to this groundbreaking innovation. 
 
From longer-lasting batteries to improved communication and energy efficiency, these 
breakthroughs are truly remarkable. We can't wait to see what the future holds as these 
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technologies continue to evolve and shape our world. 
 
 
###################### 
In recent years, the world of technology has seen some truly groundbreaking advancements. 
From new ways to harness energy to innovations that revolutionize communication, the 
possibilities are seemingly endless. Let's take a look at three of the most significant 
breakthroughs in science and technology that have emerged recently. 
 
First up is radiation suppression in loop antennas. Researchers at Aalto University have made a 
stunning discovery: they've found a way to harness the power of radiation suppression in loop 
antennas. This breakthrough enables devices to be charged over longer distances, with an 
impressive 80% efficiency, and in various orientations. Say goodbye to the days of awkwardly 
aligning your phone on a charging pad! This development paves the way for a new era of 
wireless power transfer applicable to many devices, changing the way we think about charging 
our gadgets forever. 
 
Next is Simultaneous Wireless Information and Power Transfer (SWIPT), a concept explored by 
Takuya Sasatani and colleagues from National Korea Maritime and Ocean University. Their 
research focuses on the use of SWIPT in energy harvesting and information decoding for 
Industrial Internet of Things (IIoTs). By balancing communication rates and energy efficiency, 
this approach is set to revolutionize how we interact with our devices in industrial settings. 
 
Lastly, there's room-scale Magnetoquasistatic Wireless Power Transfer, a study conducted by 
Takuya Sasatani and colleagues that has the potential to change the game once again. Their work 
demonstrates the feasibility of using a cavity-based multimode resonator for room-scale wireless 
power transfer. This means that applications in various industries could be just around the corner, 
thanks to this groundbreaking innovation. 
 
From longer-lasting batteries to improved communication and energy efficiency, these 
breakthroughs are truly remarkable. We can't wait to see what the future holds as these 
technologies continue to evolve and shape our world. 
 
(crew1) D:\crewai\crew1> 
Figure 9-1-1e. Logged output from running CrewAI program app1.py.  Hashes at end page mark 
the final output.  
 
 


